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Development and Characterization of Laser-Induced Incandescence
Towards Nanoparticle (Soot) Detection

Dr. Randy L. Vander Wal
National Center for Microgravity Research on Fluids and Combustion

National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Motivation
The production of particulates, notably soot, during combustion has both positive and

negative ramifications.  Exhaust from diesel engines under load (for example, shifting gears),
flickering candle flames and fireplaces all produce soot leaving a flame.  From an efficiency
standpoint, emission of soot from engines, furnaces or even a simple flickering candle flame
represents a loss of useful energy.

The emission of soot from diesel engines, furnaces, power generation facilities, incinerators
and even simple flames poses a serious environmental problem and health risk [1].  Yet some
industries intentionally produce soot as carbon black for use in inks, copier toner, tires and as
pigments.  Similarly, the presence of soot within flames can act both positively and negatively.
Energy transfer from a combustion process is greatly facilitated by the radiative heat transfer
from soot yet radiative heat transfer also facilitates the spread of unwanted fires. To understand
soot formation and develop control strategies for soot emission/formation, measurements of soot
concentration in both practical devices such as engines and controlled laboratory flames are
necessary.  Laser-induced incandescence (LII) has been developed and characterized to address
this need, as described here.

Background
The phenomena of incandescence can be used as a diagnostic to determine soot concentration

or soot volume fraction (defined as the volume of soot per unit volume of space, a dimensionless
quantity).   When pulsed high intensity laser light heats soot far above flame temperature, the
soot will incandesce strongly throughout the visible region of the spectrum.   The fact that pulsed
high intensity laser light can elevate the soot particle temperature even when the soot glows in
flames was observed long ago but considered an interference in pulsed laser diagnostics [2].
Only recently have researchers demonstrated that this laser-induced emission can be used as a
measure of the soot concentration [3-7], thereby validating theoretical predictions [8-12].  In
accord with the Planck radiation law, soot’s radiative emission at these elevated temperatures
increases in intensity and shifts to blue wavelengths as compared with the non-laser-heated soot
and flame gases [13].  Because it is pulsed and blue shifted, the LII signal is readily isolated from
natural flame emission.

Alternative methods of measuring soot volume fraction include physical sampling of the soot
and measuring the absorption caused by soot.  Sampling lacks high temporal and spatial resolu-
tion and requires an intrusive probe that can perturb the combustion process.  Absorption lacks
high temporal resolution, can be complicated by scattering, requires knowledge of the path
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length and makes assumptions regarding soot physical properties.  In contrast, LII offers high
spatial and temporal resolution and can be used for multidimensional measurements [4-7,14-17].
Additionally, LII provides a measure of the soot volume fraction nearly independent of contribu-
tions from both scattering by soot aggregates and absorption by polycyclic aromatic
hydrocarbons.

In addition to its application to steady-state systems, such as laminar gas-jet diffusion
flames, LII is also ideally suited to measuring soot concentrations in phenomena with rapid time-
scales lacking spatial symmetry such as turbulent combustion processes [5,18].  This is possible
because measurements may be obtained from a single laser pulse in detection times as short as
10 ns.  Since LII is not a line-of-sight technique, it also possesses geometric versatility enabling
its application to nonaxisymmetric systems.  Examples demonstrating the capabilities of LII will
be given during the presentation.

Experimental Details
Figure 1 is an experimental schematic which illustrates typical experimental hardware.  For

incandescence measurements, a pulsed laser source, beam delivery and signal collection optics,
and detector are necessary.  For point measurements, a photomultiplier is adequate while imag-
ing measurements require a gated intensified array camera.  Timing electronics synchronizing
the laser and data acquisition are necessary.  Either detector is usually preceded by a wavelength
filter such as a bandpass interference filter or spectrograph.

Characterization of Laser-induced incandescence as a Diagnostic Technique
The implementation of LII, as a diagnostic technique, requires attention to excitation and

detection conditions.  Excitation conditions include excitation laser wavelength and fluence.
Detection conditions include the time for initial signal detection, the duration of signal collection
and the spectral region comprising the detected signal.

Excitation Wavelength
High intensity ultraviolet laser pulses are known to produce unwanted photochemical pro-

cesses in soot containing flames.  Examples of undesirable emission include fluorescence from
aromatic species and photofragment fluorescence which are readily generated by wavelengths
associated with excimer lasers and harmonics of Nd:YAG lasers.  The prompt occurrence of
these laser-induced emission processes can compete with laser-induced incandescence of soot
thereby adding a spurious signal that will likely be unrelated to the soot concentration.  While
delayed detection can remove these unwanted emission contributions through collisional quench-
ing of the fluorescence, inaccuracies in the LII measurement can then arise due to particle
size-dependent cooling processes [9-12,16,19,20].  Thus the choice of excitation wavelength is
mainly determined by avoiding the creation of these photochemical interferences.

The near infrared wavelength of 1064 nm, the fundamental of the Nd:YAG laser, has proven
advantages in the generation of LII [4,21,22].  In general it is energetically incapable of causing
the aforementioned fluorescence processes except via multiphoton absorption.  Such IR multi-
photon absorption is unlikely given the absence of molecular resonances at 1064 nm.  Even if
IR multiphoton absorption did result in molecular decomposition, it would produce molecular
fragments in the ground electronic state.
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Excitation Laser Fluence
Laser fluence is a relevant parameter when heating Rayleigh-size particles with nanosecond

duration laser pulses.  The appropriate laser fluence has been a more difficult parameter to
specify for LII than excitation wavelength.  Initial measurements developed fluence dependence
curves relating the LII signal intensity to the laser fluence.  Essentially two types of patterns
were observed.  One result was a curve with different multiple slopes but which continued to
increase with increasing laser fluence [5,17].  The other fluence dependence behavior observed
was a strong initial increase in signal with fluence followed by a plateau region where the signal
was relatively independent of the laser fluence [4,16,21,22].  This region was then followed by
a decrease in signal with further increases in laser fluence.  The decrease was interpreted as
representing mass loss from the incandescing particles due to laser vaporization.  The current
consensus is that these observed patterns were in part created by laser-beam wing-effects which
cause larger volumes of soot to be heated to incandescent temperatures with increasing laser
fluence.  This effect can offset signal decreases due to vaporization-induced mass depending on
detection geometry.
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Figure 1.—Experimental Schematic.
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An example of the variation of LII intensity with laser fluence is shown in Fig. 2.  Radial LII
intensity profiles are shown that were generated within a laminar ethylene gas-jet diffusion
flame.  Shown are profiles generated by an initial laser pulse and a second laser pulse, delayed
from the first by 50 µsec.  This delay allows the soot heated by the first pulse to cool to local
flame temperature while allowing the second laser pulse to reheat the same soot as was heated by
the first laser pulse.  Although a range of LII intensities are produced by each laser pulse, those
generated by the second laser pulse are in general markedly lower than those generated by the
first laser pulse for equal fluence values, particularly at high values of laser fluence.  These
changes are interpreted as resulting from a combination of laser-induced morphological changes
for fluences below 0.5 J/cm2 and additional laser-induced vaporization mass loss at higher laser
fluences.  Normalization of the profiles by their radially-integrated intensity reveals that the
profiles are self-similar at the axial positions of 60 and 20 mm HAB, as shown in Fig. 3, even
those produced by the second laser pulse!  Differences are observed at 40 mm HAB.  Notably,
these differences in LII intensity for each laser pulse and between the two pulses (for equal
fluence values) become greater with increasing laser fluence.

The differences between the unnormalized intensity profiles produced by the two laser
pulses indicates that significant changes are introduced by the pulsed high intensity laser light.
That normalization can lead to self-similarity indicates that the soot properties and subsequent
changes are uniform in spatial position, such as at 60 mm HAB.  Radial differences in soot size
and composition lead to the observed radial differences at the axial position of 40 mm HAB.
Thus the accuracy of comparison of LII intensities at different spatial locations in a given system
will depend upon the uniformity of the soot at these positions and the value of the laser fluence.
Thus the suitable laser fluence will likely depend upon the application.

Calibration
LII is a relative measurement technique that requires calibration for quantitative soot volume

fraction determination.  A corollary is that the accuracy of LII can never be greater than the
accuracy of its calibration.  Three sources of error can arise in the calibration of LII: (1) laser
beam attentuation by soot absorption and vaporization, (2) LII signal attenuation by soot inter-
vening between the measurement point/plane and detector and,  most significantly, (3) the
uncertainty in the value for the soot refractive index.

The need for calibration stems from the fact that existing theories describing LII include a
number of assumptions regarding the physical and optical properties of the soot at the elevated
temperatures corresponding to visible incandescence [2,9-12].  In addition, these theories assume
that soot primary particles are point-contacting, noninteracting spherules within aggregates and
that no physical or chemical changes occur in the laser heated soot.  TEM micrographs of soot
collected from various flames reveal highly connected primary particles.  Thermophoretic sam-
pling of laser-heated soot has shown that graphitization of the soot occurs with the extent of
graphitization depending upon the laser fluence [23].  This is illustrated in Fig. 4.

Additional uncertainties include the formulation of the heat conduction to the local
ambient environment which governs the cooling of the laser heated soot (shortly after the laser
pulse) and the influence of aggregate structure upon the cooling rate.  Recently an alternative
theoretical formalism describing LII has been developed by Filippov et al., [24].  This theory
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Figure 2.—Radial LII intensity profiles obtained at the indicated heights above the burner (HAB).
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Figure 3.—Normalized radial LII intensity profiles from Figure 2.
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yields a Fredholm integral equation describing the temporal variation of the LII signal and its
dependence upon nanoparticle physical properties and aggregate size effects.  It has already been
proven to accurately capture the heat transfer occurring through conduction from the laser heated
soot [25].  With its inclusive formalism, this model is potentially capable of yielding both pri-
mary particle and soot aggregate size.  Further experimental testing is expected.

Detection Wavelength
The detection wavelength constitutes another variable in LII for which many choices are

appropriate.  The overriding consideration is that the specific detected wavelength not coincide
with photofragment fluorescence or other spectral interferences (laser-induced or otherwise)
associated with the combustion process.  In addition, the detected wavelength interval should be
sufficiently large to provide adequate signal while the wavelengths collected should minimize
flame luminosity as a background source.  This is readily accomplished by detection of incan-
descence in the near ultraviolet.  It should be noted that according to the theory developed by
Melton and Eckbreth [2,9], longer detection wavelengths yield a truer measure of the soot vol-
ume fraction.  From an experimental standpoint, long wavelength detection does provide
significantly larger signals and greater immunity to particle size dependent cooling processes
yet it does not offer as much spectral discrimination against natural flame luminosity as ultravio-
let detection.

Figure 4.—Transmission Electron Microscopy images of 
   a representative soot aggregate (top) and a soot 
   aggregate subjected to pulsed laser heating (bottom).
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Detection Time
The most accurate soot volume fraction measurements are obtained by signal collection

during the peak of the laser pulse where the soot particles are at their maximum temperature
[5,12,17,20-23].  Physically, this is consistent with minimizing particle size dependent cooling
processes that will become dominated by the particle surface area for cooling by conduction.
Figure 5 shows radial intensity profiles for a selected set of measurement times and durations as
indicated in the Figure. The profiles have been normalized by their respective peak intensities.
As illustrated, the profiles remain similar for different detected wavelengths at the same detec-
tion time conditions.  A comparison of radial intensity profiles for various collection gates shows
that gates that are prompt, beginning with the peak of the LII signal, yield a more similar radial
profile than those beginning well after the excitation laser pulse.  Those gates that are shorter in
duration (compare gates 2 & 5; 3 & 4) yield radial profiles closer to that obtained using gate type
1.  These differences are readily interpretable in terms of primary particle size and local tempera-
ture.  Soot particles near the flame centerline cool faster due to their smaller primary particle size
and the lower local ambient gas temperature at this axial height.  Hence delayed detection or
longer detection times accentuate the differences in primary particle size and local temperature.

Primary Particle Size Effects
This presentation has repeatedly emphasized that the LII signal is dependent upon primary

particle size.  Given this sensitivity, the potential exists for using LII as an optical technique for
in-situ primary particle sizing.  Two methods have been proposed based on theoretical calcula-
tions.  These two approaches utilize a) the intensity  ratio of the decaying LII signal at two
different detected wavelengths at equal detection times or b) the temporal evolution of the signal
at a single detected wavelength.

To test these approaches, we used different flames with different fuels to produce primary
particles of different size yet at similar temperatures [20].  The temporal evolution of the LII
signal generated by these different primary particles is illustrated in Fig. 6.  A strong size
dependence is observed.  According to theory, the former approach, a), is predicted to be both
monotonic and possess the stronger dependence upon particle size.  As illustrated in Fig. 7 this is
not realized in practice.  The latter approach, b), does yield a monotonic relation between the LII
decay rate and primary particle size as shown in Fig. 8.  Using this method to develop a calibra-
tion database yielded good agreement with primary particle sizes directly measured from TEM
micrographs in a laminar ethylene air diffusion flame within the early soot growth and late
oxidation regions as seen in Fig. 9.  The differences arise from aggregate size effects which can
act to reduce the cooling rate of the primary particles [20].

Recent Advancements
We have recently characterized and demonstrated laser-induced incandescence for the measure-

ment of metal nanoparticle concentrations [26].  A spectral and temporal survey of the laser-induced
incandescence as a function of the excitation laser fluence and detection wavelength has been com-
pleted revealing new processes not previously observed in LII applied to soot.  Validation of the
incandescence as a measure of the concentration was demonstrated by absorption measurements.
Fluence dependence measurements have also been made.  Double pulse measurements were used to
determine the fluence for the onset of vaporization-induced mass loss.  Metals tested to-date include
(in order of increasing vaporization temperature) Fe, Ti, Mo and W.
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Figure 6.—Time-resolved LII signals produced by the different 
   size primary particles produced by the diffusion flames of the 
   different fuels.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

–200 0 200 400 600 800

Methane

Ethylene

Acetylene

S
ig

na
l (

V
) 

Time (ns) 

Figure 7.—Correlation between measured primary particle size and
   the signal intensity ratio between 300 nm and 600 nm for the 
   different signal integration times.  The points along each curve 
   represent measurements (with increasing primary particle size) 
   from methane, ethane, ethylene and acetylene respectively.
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Figure 8.—Correlation between measured primary particle size and
   the second decay rate describing the temporally resolved LII 
   signal.  The points along each curve represent measurements
   (with increasing primary particle size) produced by the diffusion 
   flames of methane, ethane, ethylene, and acetylene respectively.
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Figure 9.—Comparison between the predicted primary particle size
  based on the optical (LII) measurements and interpreted using the
   calibration curve in Fig. 8 and direct measurements from trans-
   mission electron microscopy micrographs.
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